Identifying representative synergy matrices for describing muscular activation patterns during multidirectional reaching in the horizontal plane.
نویسندگان
چکیده
Muscle synergies have been proposed as a simplifying principle of generation of movements based on a low-dimensional control by the CNS. This principle may be useful for movement restoration by, e.g., functional electrical stimulation (FES), if a limited set of synergies can describe several functional tasks. This study investigates the possibility of describing a multijoint reaching task of the upper limb by a linear combination of one set of muscle synergies common to multiple directions. Surface electromyographic (EMG) signals were recorded from 12 muscles of the dominant upper limb of eight healthy men during single-joint movements and a multijoint reaching task in 12 directions in the horizontal plane. The movement kinematics was recorded by a motion analysis system. Muscle synergies were extracted with nonnegative matrix factorization of the EMG envelopes. Synergies were computed either from the single-joint movements to describe the two degrees of freedom independently or from the multijoint movements. On average, the multijoint reaching task could be accurately described in all the directions (coefficient of determination >0.85) by a linear combination of either four synergies extracted from the individual degrees of freedom or three synergies extracted from multijoint movements in at least three reaching directions. These results indicate that a large set of multijoint movements can be generated by a synergy matrix of limited dimensionality and common to all directions if the synergies are extracted from a representative number of directions. The linear combination of synergies may thus be used in strategies for restoring functions, such as FES.
منابع مشابه
Reorganization of muscle synergies during multidirectional reaching in the horizontal plane with experimental muscle pain.
Muscle pain induces a complex reorganization of the motor strategy which cannot be fully explained by current theories. We tested the hypothesis that the neural control of muscles during reaching in the presence of nociceptive input is determined by a reorganization of muscle synergies with respect to control conditions. Muscle pain was induced by injection of hypertonic saline into the anterio...
متن کاملProgressive Abduction Loading Therapy with Horizontal-Plane Viscous Resistance Targeting Weakness and Flexion Synergy to Treat Upper Limb Function in Chronic Hemiparetic Stroke: A Randomized Clinical Trial
Background Progressive abduction loading therapy has emerged as a promising exercise therapy in stroke rehabilitation to systematically target the loss of independent joint control (flexion synergy) in individuals with chronic moderate/severe upper-extremity impairment. Preclinical investigations have identified abduction loading during reaching exercise as a key therapeutic factor to improve r...
متن کاملReorganization of Muscle Synergies during Multidirectional 6 Reaching in the Horizontal Plane with Experimental Muscle
10 1 Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology 11 Göttingen, Bernstein Center for Computational Neuroscience, University Medical Center 12 Göttingen, Georg-August University, Göttingen, Germany 13 2 Center for Sensory-Motor Interaction, Department of Health Science and Technology, 14 Aalborg University, Aalborg, Denmark 15 3 Pain Clinic, Center for Anesthesi...
متن کاملCommon muscle synergies for balance and walking
Little is known about the integration of neural mechanisms for balance and locomotion. Muscle synergies have been studied independently in standing balance and walking, but not compared. Here, we hypothesized that reactive balance and walking are mediated by a common set of lower-limb muscle synergies. In humans, we examined muscle activity during multidirectional support-surface perturbations ...
متن کاملMuscle synergy organization is robust across a variety of postural perturbations.
We recently showed that four muscle synergies can reproduce multiple muscle activation patterns in cats during postural responses to support surface translations. We now test the robustness of functional muscle synergies, which specify muscle groupings and the active force vectors produced during postural responses under several biomechanically distinct conditions. We aimed to determine whether...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 103 3 شماره
صفحات -
تاریخ انتشار 2010